

NatNet
API User’s Guide

Version 2.2.0

April 26, 2010

NaturalPoint Corporation

33872 SE Eastgate Circle

Corvallis OR 97339

Copyright  2004-2010 NaturalPoint Corporation. All rights
reserved.

NaturalPoint Publication Number: P-OT-054

Printed in the US.

NatNet User's Guide 2

NaturalPoint Proprietary

All data and information contained in or disclosed by this document is confidential and proprietary information of NaturalPoint

Corporation and all rights therein are expressly reserved. By accepting this material the recipient agrees that this material and

the information contained therein is held in confidence and in trust and will not be used, copied, reproduced in whole or in part, nor

its contents revealed in any manner to others without the express written permission of NaturalPoint Corporation.

Information in this document is preliminary and subject to change and does not represent a commitment on the part of

NaturalPoint Corporation.

NatNet User's Guide 3

TABLE OF CONTENTS

NatNet Overview ... 4

SDK Contents ... 5

Folder Contents .. 5

Running the Samples ... 6

Running the Simple Client-Server Sample ... 6

Running the rigid body sample (SampleClient3D) ... 6

Running the .NET sample ... 7

Using the NatNet SDK .. 8

Building a Native Client to Receive NatNet Data ... 8

Building a Native Server to Send NatNet Data ... 8

Building a Managed .NET Client to Receive NatNet Data .. 8

API Reference ... 10

NatNet Data Types ... 10

NatNetClient Class ... 11

Description ... 11

Constructor & Destructor Documentation .. 11

Member Function Documentation .. 11

Appendix A : Bitstream Syntax ... 15

Building a Direct Depacketization Client (Without NatNet)... 15

Technical Support .. 16

NatNet User's Guide 4

NATNET OVERVIEW

The NatNet SDK is a Client/Server networking SDK for sending and receiving NaturalPoint data across networks. NatNet uses the

UDP protocol in conjunction with either Point-To-Point Unicast or IP Multicasting for sending data.

The following diagram outlines the major component communication of a typical NetNet setup.

Figure 1 – NatNet Component Overview

Multicast Address
(224.0.0.1:1001)

OR
Unicast Address
 (app defined ip/port)

NatNet Assembly
(NatNetML.dll)

NatNet SDK
(NatNet.lib)

NatNet Server App
(Arena,

TrackingTools)

NatNet “Native”
Client

NatNet “Managed”
Client (e.g.

LabView, MatLab)

Direct
Depacketization
Client (e.g. Unix

clients)

UDP Packets

A NatNet Server has 2 threads and 2 sockets, one for sending data, and one for receiving/sending commands. A NatNet Client has 2

threads and 2 sockets, one for receiving data, and one for receiving/sending commands.

NatNet servers and clients can exist on the same or separate machines. Additionally, multiple NatNet clients can connect to a single

NatNet server. When a NatNet server is configured to use IP Multicast, the data is only sent once, to the Multicast group.

NatNet User's Guide 5

SDK CONTENTS

The NatNet SDK consists of:

 NatNet Library Native C++ networking library (headers, static library (.lib) and dynamic import library (.lib/.dll))

 NatNet Assembly Managed .NET assembly (NatNetML.dll) for use in .Net compatible clients.

 NatNet Samples Sample projects and executables designed to be quickly integrated into your own code.

FOLDER CONTENTS

Figure 2 - NatNet SDK Folder contents

Folder Contents

\include NatNet SDK header files. Client applications should include these.

\lib Static and dynamic library files for the NatNet SDK.

\lib\x64 64-bit versions of the library files.

\Samples VisualStudio 2005 samples. Use the solution file here to open all sample

projects.

\Samples\bin Precompiled samples with sample data files.

\Samples\SampleClient Sample NatNet console app that connects to a NatNet server, receives a

data stream, and writes that data stream to an ascii file

\Samples\SampleClient3D Sample NatNet console app that connects to a NatNet server, receives a

data stream, and displays that data in an OpenGL 3D window.

\Samples\SimpleServer Sample NatNet console app that creates and starts a NatNet server, creates

simple Marker, RigidBody, and Skeleton data, and streams that data onto

the network.

\Samples\PacketClient Simple example showing how to connect to a NatNet multicast stream and

decode NatNet packets directly without using the NatNet SDK.

\Samples\WinFormsSample Simple C# .NET sample showing how to use the NatNet managed assembly

(NatNETML.dll).

NatNet User's Guide 6

RUNNING THE SAMPLES

Pre-compiled versions of the NatNet samples have been provided in the \Samples\bin folder. These versions can be used to quickly

test your application. Please refer to the instructions in this section for information on running specific samples.

Note! The Visual C++ runtime libraries are required to run the samples. If you encounter an error message when attempting to

run the samples, especially on machines without Visual C++ installed, please install the VC runtime redistributable package located in

Samples\VCRedist. If the problem peresists, pleas try rebuildingthe samples using VisualC++, or contact support.

RUNNING THE SIMPLE CLIENT-SERVER SAMPLE

1. Start the server:
SimpleServer.exe

2. Start the client:
SampleClient.exe [IPAddress] [OutputFilename.txt]

3. Start streaming by pressing 's' in the SimpleServer console window.

You should begin to see data streaming in the client window or to text file.

Note

 [parameters] are optional.

 If no IP address is specified, the client will assume the server is on the same machine (local machine).

RUNNING THE RIGID BODY SAMPLE (SAMPLECLIENT3D)

With Client/Server on same machine:

1. [Arena] Load a dataset with ridid body or skeleton definitions (pt2 and skl files)
2. [Arena] Enable network streaming (Other -> Stream Frames)
3. [Arena] Enable streaming rigid body data (check Other-> Rigid Body Data)
4. [Sample3D] File -> Connect

With Client/Server on separate machines:

1. [Arena] Load a dataset with ridid body or skeleton definitions (pt2 and skl files)
2. [Arena] Set IP address to stream from (Other -> IP address edit box)
3. [Arena] Enable network streaming (Other -> Stream Frames)
4. [Arena] Enable streaming rigid body data (check Other-> Rigid Body Data)
5. [Sample3D] Set Client and Server IP addresses
6. [Sample3D] File -> Connect

Note

 IP Address IP Address of client NIC card you wish to use.

 Server IP Address IP Address of server entered in step 2 above.

NatNet User's Guide 7

RUNNING THE .NET SAMPLE

1. Start a NatNet server application (e.g. Arena or TrackingTools).
2. Enable NatNet streaming from the Server application.
3. Start the WinForms sample application from the NatNet Samples folder.
4. Update the “Local” and “Server” IP Addresses as necessary.
5. Press the “Connect” button to connect to the server.
6. Press the “GetDataDesc” button to request and display a detailed description of the Server’s currently streamed objects.
7. Select a Row in the DataGrid to display that value in the graph.

Figure 3 – Receiving NatNet data in a .NET Environment

NatNet User's Guide 8

USING THE NATNET SDK

The code samples are the quickest path towards getting NatNet data into your application. We typically recommend you:

1. Identify your application’s development/interface requirements (managed, native, etc).

2. Adapt the NatNet sample code from the corresponding NatNet sample application in the samples folder into your

application.

3. Use the API reference for additional information.

The Visual Studio solution file \Samples\NatNetSamples.sln will open and build all of the NatNet sample projects.

If you are creating an application from scratch, please refer to the following sections for application specific requirements.

BUILDING A NATIVE CLIENT TO RECEIVE NATNET DATA

Steps for building a NatNet client application/library to receive data from a NatNet server application such as Arena or

TrackingTools:

1. Adapt the SampleClient sample (SampleClient.cpp) to your application's code.
2. Include NatNetClient.h, NatNetHelper.h, and NatNetTypes.h
3. Link to NatNetLib.lib (dynamic) OR NatNetLibStatic.lib (static)
4. [OPTIONAL] If linking dynamically, define NATNETLIB_IMPORTS and distribute NatNetLib.dll with your application

Note : Be sure to link to ws2_32.lib if linking to NatLetLib statically.

BUILDING A NATIVE SERVER TO SEND NATNE T DATA

Steps for building a NatNet server application/library to send/forward NatNet formatted data to a NatNet client application:

1. Adapt SimpleServer (SampleServer.cpp) to your application's code.
2. Include NatNetServer.h, NatNetHelper.h, and NatNetTypes.h
3. Link to NatNetLib.lib (dynamic) OR NatNetLibStatic.lib (static)
4. [OPTIONAL] if linking dynamically, define NATNETLIB_IMPORTS and distribute NatNetLib.dll with your application

Note : Be sure to link to ws2_32.lib if linking to NatLetLib statically.

BUILDING A MANAGED .NET CLIENT TO RECEIVE NATNET DATA

Steps for building a managed NatNet client application.

1. Add the NatNetML.dll .NET assembly as a reference to your VB.NET/C# project.
2. The NatNetML namespace is now available to your code, in addition to intellisense library comments.

Note : When distributing your .NET application, be sure to distribute the NatNetML.dll as well.

NatNet User's Guide 9

NatNet User's Guide 10

API REFERENCE

The NatNET API consist of the following objects:

 NatNetClient The class for communicating with a NatNet Server such as Arena or Tracking Tools.

 NatNetServer The class for implementing a NatNet server and sending NatNet formatted data packets.

 NatNet Data Types Structures encapsulating data encoded in NatNet packets.

 NatNet Assembly A managed (.NET) class library that can be called by .NET components. The NatNet assembly wraps the
underlying native NatNet library, exposing the NatNetClient and NatNet Data Types for use in .NET
compatible environments (e.g. VB.NET, C#, LabView, MatLab).

NATNET DATA TYPES

NatNet server applications stream three (3) fundamental types of motion capture data.

Figure 4 – NatNet Data Types

Data Type Description

MarkerSet Data A named collection of identified markers and the marker positions (X,Y,Z)

RigidBody Data A named segment with a unique ID, position, and orientation data, and the collection of identified

markers used to define it.

Skeleton Data A named, hierarchical collection of RigidBodies.

NatNet clients can discover what data objects a server application is currently streaming using the DataSetDescriptions structure.

NatNet clients receive actual data from a server using the FrameOfMocapData structure.

Dataset Descriptions This packet contains a description of the motion capture data sets (MarkerSets, Skeletons, RigidBody) for

which a frame of motion capture data will be generated.

Frame of Mocap Data This packet contains a single frame of motion capture data for all the data sets described in the Dataset

Descriptions.

 The SampleClient sample illustrates how to retrieve data descriptions and data and interpret this data.

Please refer to the NatNetTypes.h header file or the NatNetML.dll assembly for the most up to date descriptions of the types.

NatNet User's Guide 11

NATNETCLIENT CLASS

DESCRIPTION

NatNetClient is a complete C++ class for connecting to NatNet server applications, such as NaturalPoint Arena and NaturalPoint
TrackingTools.

CONSTRUCTOR & DESTRUCTOR DOCUMENTATION

NatNetClient::NatNetClient ()

Creates a new (multicast) instance of a NatNet Client.

NatNetClient::NatNetClient (int iConnectionType)

Creates a new instance of a NatNet Client using the specified connection protocol.

Parameters:

iConnectionType Type of connection (0 = Multicast, 1 = Unicast).

NatNetClient::~NatNetClient ()

Destructor.

NatNetClient::Uninitialize()

Disconnects from server.

MEMBER FUNCTION DOCUMENTATION

int NatNetClient::GetDataDescriptions (sDataDescriptions ** pDataDescriptions)

Requests a description of the current streamed data objects from the server app. This call blocks until request is responded to
or times out.

Parameters:

pDataDescriptions Array of Data Descriptions.

Returns:

On success, number of data objects. 0 otherwise.

NatNet User's Guide 12

sFrameOfMocapData * NatNetClient::GetLastFrame OfData ()

Retrieves the most recently received frame of mocap data.

Returns:

Frame of Mocap Data

int NatNetClient::GetServerDescription (sServerDescription * pServerDescription)

Requests a description of the current NatNet server the client is connected to. This call blocks until request is responded to or
times out.

Parameters:

pServerDescription Description of the NatNet server.

Returns:

On success, number of data objects. 0 otherwise.

int NatNetClient::Initialize (char * szLocalAddress, char * sz ServerAddress)

int NatNetClient::Initialize (char * szLocalAddress, char * szServerAddress, int HostCommandPort)

int NatNetClient::Initialize (char * szLocalAddress, char * sz ServerAddress, int HostCommandPort, int

HostDataPort)

Initializes client socket and attempts to connect to a NatNet server at the specified address.

Parameters:

szLocalAddress IP address of client
szServerAddress IP address of server
HostCommandPort server command port (default = 1510)
HostDataPort server data port (default = 1511)

Returns:

0 if successful, error code otherwise

void NatNetClient::SetMulticastAddress (char * szMulticast)

Sets the NatNet server multicast group/address to connect to. SetMulticastAddress() must be called before calling Initialize(...).

Parameters:

szCommand application defined Message string

void NatNetClient::NatNetVersion (unsigned char Version[4])

Retrieves the version of the NatNet library the client is using.

Parameters:

Version version array (form: major.minor.build.revision)

NatNet User's Guide 13

void NatNetClient::SendMessage (char * szCommand)

Sends a message to the server and returns. Response will be delivered in-band.

Parameters:

szCommand application defined Message string

int NatNetClient::SendMessageAndWait (char * szCommand, int tries, int timeout, void ** Response, int *

pnBytes)

Sends an application-defined message to the NatNet server and waits for a response.

Parameters:

szCommand Application defined message.
tries Number of times to try and send the message
timeout time to wait for response (in milliseconds) before timing out
Response Application defined response.
pnBytes Number of bytes in response

Returns:

0 if succssful, error code otherwise.

int NatNetClient::SendMessageAndWait (char * szCommand, void ** Response, int * pnBytes)

Sends an application-defined message to the NatNet server and waits for a response.

Parameters:

szCommand Application defined message.
Response Application defined response.
pnBytes Number of bytes in response.

Returns:

0 if successful, error code otherwise.

int NatNetClient:: SetDataCallback(void (*CallbackFunction)(sFrameOfMocapData *FrameOfData, void* pUserData),

void* pUserData /*=NULL*/)

Sets the data callback function for NatNet frame delivery. This function will be called whenever NatNet receives an in-band data
(e.g. frame of data).

Parameters:

CallbackFunction Callback Function
pUserData User-Definable data

Returns:

0 if successful, error code otherwise.

NatNet User's Guide 14

void NatNetClient::SetVerbosityLevel (int iLevel)

Sets the message reporting level for internal NatNet messages.

Parameters:

iLevel Verbosity level (see Verbosity level in NatNetTypes.h)

int NatNetClient::Uninitialize ()

Disconnects from the current NatNet Server.

Returns:

0 if successful, error code otherwise.

NatNet User's Guide 15

APPENDIX A : BITSTREAM SYNTAX

In order to provide the most current bitstream syntax, the NatNet SDK includes a testable working depacketization sample that

decodes NatNet Packets directly without using the NatNet client library.

Note: Decoding packets directly is not recommended. The bitstream packet syntax is subject to change, requiring an application

to rebuild against the latest NatNet library. NatNet packets should only be decoded directly where use of the NatNet library is not

possible.

Using the NatNet client library protects client applications from future bistream syntax changes.

BUILDING A DIRECT DEPACKETIZATION CLIENT (WITHOUT NATNET)

For situtions where you would like to receive a NatNet data stream but it is not possible to use the NatNet client library (e.g. on an

unsupported platform such as Unix), you can use the PacketClient sample as a template for depacketizing NatNet packets directly.

1. Adapt the PacketClient sample (PacketClient.cpp) to your application's code.
2. Regularly update your code with each revision to the NatNet bitstream syntax.

NatNet User's Guide 16

TECHNICAL SUPPORT

NaturalPoint is committed to providing best-in-class technical support.

In order to provide you with the most up to date information as quickly as possible, we recommend the following procedure:

1. Update to the latest software. For the latest versions of OptiTrack software, drivers, and SDK samples, please visit our

downloads section:

http://www.naturalpoint.com/optitrack/support/downloads.html

2. Check out the OptiTrack FAQs:

http://www.naturalpoint.com/optitrack/support/opti-faq.html

3. Check the forums. Very often a similar issue has been reported and solved in the forums:

http://forum.naturalpoint.com/

4. Contact technical support:

Phone: 541-753-6645

Fax: 541-753-6689

Email Form: http://www.naturalpoint.com/optitrack/support/contact/

Mail: NaturalPoint Corporation

P.O. Box 2317

Corvallis, OR 97339

http://www.naturalpoint.com/optitrack/support/downloads.html
http://www.naturalpoint.com/optitrack/support/opti-faq.html
http://forum.naturalpoint.com/
http://www.naturalpoint.com/optitrack/support/contact/

	Table Of Contents
	NatNet Overview
	SDK Contents
	Folder Contents

	Running the Samples
	Running the Simple Client-Server Sample
	Running the rigid body sample (SampleClient3D)
	Running the .NET sample

	Using the NatNet SDK
	Building a Native Client to Receive NatNet Data
	Building a Native Server to Send NatNet Data
	Building a Managed .NET Client to Receive NatNet Data

	API Reference
	NatNet Data Types
	NatNetClient Class
	Description
	Constructor & Destructor Documentation
	NatNetClient::NatNetClient ()
	NatNetClient::NatNetClient (int iConnectionType)
	Parameters:

	NatNetClient::~NatNetClient ()
	NatNetClient::Uninitialize()

	Member Function Documentation
	int NatNetClient::GetDataDescriptions (sDataDescriptions ** pDataDescriptions)
	Parameters:
	Returns:

	sFrameOfMocapData * NatNetClient::GetLastFrameOfData ()
	Returns:

	int NatNetClient::GetServerDescription (sServerDescription * pServerDescription)
	Parameters:
	Returns:

	int NatNetClient::Initialize (char * szLocalAddress, char * szServerAddress) int NatNetClient::Initialize (char * szLocalAddress, char * szServerAddress, int HostCommandPort) int NatNetClient::Initialize (char * szLocalAddress, char * szServer...
	Parameters:
	Returns:

	void NatNetClient::SetMulticastAddress (char * szMulticast)
	Parameters:

	void NatNetClient::NatNetVersion (unsigned char Version[4])
	Parameters:

	void NatNetClient::SendMessage (char * szCommand)
	Parameters:

	int NatNetClient::SendMessageAndWait (char * szCommand, int tries, int timeout, void ** Response, int * pnBytes)
	Parameters:
	Returns:

	int NatNetClient::SendMessageAndWait (char * szCommand, void ** Response, int * pnBytes)
	Parameters:
	Returns:

	int NatNetClient:: SetDataCallback(void (*CallbackFunction)(sFrameOfMocapData *FrameOfData, void* pUserData), void* pUserData /*=NULL*/)
	Parameters:
	Returns:

	void NatNetClient::SetVerbosityLevel (int iLevel)
	Parameters:

	int NatNetClient::Uninitialize ()
	Returns:

	Appendix A : Bitstream Syntax
	Building a Direct Depacketization Client (Without NatNet)

	Technical Support

